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Abstract

Recently, many scientists clearly proved on their work that aircraft navigation
information (position, velocity, and attitude) can be determined using optical mea-
surements from imaging sensors combined with an inertial navigation system. This
can be accomplished by tracking the locations of stationary optical features in multiple

images and using the resulting geometry to estimate and remove inertial errors.

The effectiveness of fusing imaging and inertial sensors using an Extended
Kalman Filter (EKF) algorithm has been shown in previous research efforts. In
this approach, the idea was to increase the robustness of the feature tracking algo-
rithm. Thus, image feature correspondence search was aided using the inertial sensor
measurements, resulting in more robust feature tracking. The resulting image-aided
inertial algorithm was tested using both simulation and experimental data. Although
the feature correspondence search is stabilized, the overall problem remained unstable
due to the well-known deleterious effects of the nonlinear measurement model. These
effects caused a divergence in the EKF implementation seen during our long-duration
Monte-Carlo simulations. In other words, the measurement model is highly sensi-

tive to the current parameter estimate, which invalidates the linearized measurement

model assumed by the EKF.

In order to cope with divergence problem, the Unscented (Sigma-Point) Kalman
Filter (UKF) has been proposed in the literature in order to address the large class
of recursive estimation problems. In this research, a variation of the UKF is applied
to the image-aided inertial navigation problem, with the goal of improving upon
the established limitations of our previous EKF implementation. Tightly integrating
optical and inertial sensors for navigation using UKF is rigorously designed from
first principles, yielding a novel hybrid UKF algorithm which increases the sigma-
point density along the axes of highest uncertainty. The UKF is evaluated using a

v
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combination of simulated and experimental data. The performance of the image-aided
navigation system is analyzed and compared to the baseline EKF from our previous

work.

A combination of simulation and experimental analysis indicates that the UKF
algorithm is superior to the EKF, namely the divergence problem is removed and
overall errors are reduced. The covariance of the UKF algorithm represents well while
the processing time increases such that it requires 410 seconds to process 60 seconds of
simulation where EKF algorithm needs 178 seconds only. Since the processing speed
is a very important design constraint for the application, an efficient modification
using quaternion is applied. Consequently, UKF algorithm is optimized such that it

requires 198 seconds of processing time for 60 seconds of simulation.
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TIGHTLY INTEGRATING OPTICAL AND INERTIAL SENSORS

For NavicATIiION UsING THE UKF

I. Introduction

1.1 Background

The advent of Global Positioning System (GPS) has changed precision navi-
gation capability for navigators who have utilized mechanical instruments such as
astrolabes, sextants and driftmeters to determine their position, velocity and angle
precisely. The fact that GPS cannot be used in all environments forces people to
find new methods. Obviously, it can be seen that there is a synergy between imaging
and inertial sensors which is already being used by human or other animals. This
synergy is a motivation for using optical measurements to provide perfect navigation

information.

The interpretation of the image has always been the challenging problem for
autonomous navigation. This is also a difficulty shared with Automatic Target Recog-
nition (ATR). Indeed, the ATR problem in this structured environment is tractable
for celestial tracking, and automatic star trackers are widely used for space navigation
and ICBM guidance (see [17], [16], [9]). When ground images are to be used, the dif-
ficulties associated with image interpretation are paramount. At the same time, the
problems associated with the use of optical measurements for navigation are somewhat
simpler than ATR. Moreover, there are improvements motivating the use of inertial
measurements to aid the image interpretation such as recent developments in feature
tracking algorithms, miniaturization, and reduction in cost of inertial sensors and

optical images aided by the continuing improvement in microprocessor technology.

Typically, there are two image-aiding methods depending on how the image cor-
respondence problem is addressed. These are optic flow methods and feature-based

methods. Optic flow methods are generally used for elementary motion detection, fo-
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cusing on determining relative velocity, angular rates, or obstacle avoidance (see [7]).
Also, these methods determine correspondence for a whole portion of the image be-
tween frames. On the contrary, feature-based methods determine correspondence for

“landmarks” in the scene over multiple frames.

A rigorous, stochastic projection algorithm is presented in [29], which incorpo-
rates inertial measurements into a predictive feature transformation, effectively con-
straining the resulting correspondence search space. The algorithm was incorporated
into an extended Kalman filter and tested experimentally in [27] using both tactical
and consumer grade inertial sensors. The integrated system demonstrated at least

two orders of magnitude improvement over the inertial-only navigation solution.

One nonlinear filtering approach is investigated in this thesis. In order to im-
prove the sub-optimal performance of the extended Kalman filter, the unscented
Kalman filter will be used. In the EKF, the state distribution is approximated by a
jointly Gaussian random vector and propagated through a linearized approximation
of the nonlinear dynamics and measurement model. Our analysis indicated this is
the reason for sub-optimal performance and divergence of previous work. The UKF
addresses this issue by representing the state distribution as a collection of sigma
points, which are directly transformed using the nonlinear dynamics and measure-
ment models. This has been shown in the literature to preserve additional moments
of the state distribution and, as such, is more resilient to the deleterious effects of

linearization errors.

1.2 Problem Definition

The fact that GPS signals are not available in all locations causes a weakness in
navigation and requires the development of non-GPS based navigation reference which
can aid an inertial navigation system. Thus, one of the motivations of this research
is to address the benefits of tightly integrating navigation sensors, such as inertial
measurement units (IMU) and global positioning system measurements. The com-

plimentary characteristics of the two sensors allow the integrated system to perform
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at levels which are much better than the levels attained by using either sensor alone
(see [3]). Consequently, integrated systems have become more popular, especially in

military-grade navigation systems.

The weakness in GPS-based navigation can be handled by a non-GPS navigation
approach which is coupling of the imaging and inertial sensors at a deep level (see [22],
[18], [2]). This technique has some important advantages. The sensors can operate in
all environments while GPS signal can not be received everywhere (e.g., indoors, under
trees, underwater, etc.). Secondly, passive signals are used, so they do not require the
transmission (or reception) of radio signals. As a result, optical and inertial sensors

are immune to disruptions in the radio spectrum.

Beside all the reasons, the most valuable motivation of this work is to improve
the efficiency of previous work. In previous work, a method using extended Kalman
filter is developed to integrate optical and inertial sensors at a deep level. The lin-
earization errors of the extended Kalman filter remains uncorrected, especially at the
presence of large attitude errors. This thesis describes an estimator which doesn’t
suffer from the linearization errors of the extended Kalman filter. The estimator
should overcome the divergence problem of EKF during long-duration Monte Carlo
simulations. Hopefully, this research gives better results for long-term autonomous

navigation.

1.3 Assumptions

This research is made under a number of assumptions listed below.

e A strapdown inertial measurement unit (IMU) is rigidly attached to one or more

cameras. Synchronized raw measurements are available from both sensors.

e The camera images areas in the environment which contain some stationary

objects.

e Binocular measurements are available which provide an indication of range to

objects in the environment.
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e The inertial and optical sensors’ relative position and orientation is known

(see [26]) for a discussion of boresight calibration procedures).

1.4 Thesis Overview

The thesis is divided into five chapters. Currently, a brief background and
motivation are presented in Chapter One. Chapter Two provides required background
information for the optical and inertial integration problem. It also prepares the
reader for the following chapter by explaining reference frames, error analysis etc.
The navigation algorithm is presented in Chapter Three in details. This is followed
by a description of simulation and experimental results in Chapter Four. Finally,

Chapter Five is reserved for conclusion and future work.
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II. Background

his chapter describes some issues required to understand the fusion of imaging
Tand inertial sensors. This chapter begins by providing an overview of reference
frames and inertial navigation. Next, the image-aided navigation techniques are de-
fined. In previous work section, the reason why there is a need for a better approach
is explained. Depending on the need for a better estimation algorithm, the unscented

Kalman filter (UKF) and particle filter (PF) are presented at the end of chapter.

2.1 Reference Frames

The process of inertial navigation is defined according to a number of Cartesian
co-ordinate reference frames. Since they are Cartesian, it simplifies computations in
navigation. These frames are right-handed coordinate frames consisting of mutually
perpendicular x, y and z axes. Position, velocity and orientation of a body are
expressed in reference frames. For this research, the following reference frames are

defined based on that presented in [4] and [24]:

e True inertial frame (I-frame)

e Earth-fixed inertial frame (i-frame)

e Earth-centered Earth-fixed frame (e-frame)
e Navigation frame (n’-frame)

e Earth-fixed navigation frame (n-frame)

e Body frame (b-frame)

e Camera frame (c-frame)

True inertial frame (I-frame) is the reference frame in which Newton’s laws of
motion apply. This frame is determined by fixed stars in ®3. Due to the relative

nature of universe, it doesn’t have a predefined origin.

The Earth-centered inertial frame (i-frame) has its origin at the center of Earth

and aligned with respect to the fixed stars. This non-rotating frame’s z axis is aligned
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Figure 2.1:  Frames of Reference. In this figure inertial, Earth
and vehicle-fixed frames are illustrated as given in [24]. Vehicle-
fixed frame originate at local meridian while inertial and Earth
frames originate at Earth’s center of mass.

with the Earth spin axis that is assumed to be invariant. The x and y axes are
located on the equatorial plane. Since the frame moves with Earth, although it is not
rotating, it does accelerate with respect to true inertial frame. However, Newton’s
laws are approximately correct in this frame and it can be considered as an inertial

frame for navigational purposes.

Like the Earth-centered frame, the Earth-centered Earth-fixed frame (ECEF)
(e-frame) has its origin at the Earth’s center and it is an orthonormal basis in #3.
Its z axis is aligned with the Earth’s spin axis while x axis is on the equatorial plane
pointing toward the Greenwich meridian. The y axis is also on the equatorial plane
pointing toward 90 degrees east longitude. This frame is fixed to the Earth and
rotates with Earth. Hence, the Earth-centered and ECEF frames coincide once each

24 hours.

The vehicle-fixed navigation frame (n’-frame) is an orthonormal basis in $3,

with origin located at a predefined point on a vehicle. The vehicle-fixed navigation

Ol LAC U Zyl_ilsl
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Figure 2.2:  Body Reference Frame is located at a fixed point
on the aircraft [24].

frame’s x, y and z axes point in the north, east and down directions, respectively.
This is called (NED) convention. For the purposes of this research, down is defined
using the gravity vector. The n’-frame rotates with respect to the e-frame due to

translational motion of the vehicle. The i, e and n’-frames are illustrated in Figure 2.1.

The Earth-fixed navigation frame (n-frame) is an orthonormal basis in R2, with
origin located at a predefined location on the Earth, typically on the surface. The
NED convention is current relative to the origin. As in the previous case, down
is defined as the direction of the gravity vector. This frame remains fixed to the
Earth. Thus, the turn rate of the navigation frame is governed by the motion of the
frame’s origin with respect to Earth. This frame is not useful for very-long distance

navigation, but it can simplify equations for local navigation routes.

The body frame (b-frame) is rigidly fixed to the vehicle. The origin is located
at a fixed point on the aircraft. The axes of the frame are aligned with the roll, pitch
and yaw axes of the vehicle. The positive x axis points out the nose, the positive y
axis points out right wing and the z axis points out the bottom of vehicle. The body

frame is illustrated in Figure 2.2.

The camera frame (c-frame) is an orthonormal basis in %2, rigidly attached to
a camera and the origin is at the camera’s optical center. The x and y axes point
up and to the right, respectively, and are parallel to the image plane of the camera.
The z axis points out of the camera perpendicular to the image plane. The c-frame

is shown in Figure 2.3.

Ol LAC U Zyl_i.lbl

www.manaraa.com




Figure 2.3:  Camera frame illustration. The camera reference
frame originates at the optical center of the lens [29].

2.2 Quaternions

In three dimensional space, rotations can be applied to a vector using a DCM
matrix that is also used in previous work. Another possible way to represent three-
dimensional rotation is quaternion algebra (see [6], [11], [24]). Actually, quaternion
concept is related to rotation vector. Quaternion is a four parameter coordinate

transformation (one real dimension and 3 imaginary dimensions):
Q=¢+iz+jy+kz (2.1)

There is a physical explanation for quaternion when quaternion is used to rep-
resent the rotation between two coordinate frames. This is called axis angle represen-

tation which is the closest physical explanation:

e ¢ = angle of rotation

e V(x,y,z) = unit vector representing axis of rotation
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These four components are also called ”Euler’s Symmetric Parameters”. The

formula to convert axis representation to quaternion form is:

Q= cos(%) + E(xszn(g)) + j(yszn(%)) + l%(zsm(g)) (2.2)

In this case, quaternion can be represented as:

¢ cos(%

~—
~—

q2 Tsin

(2.3)
g ysin

—~ — —~
N NS e
N—

~—

q4 z8in

where the relationship between parameters is based on orthonormal vector as shown

in the following section.

2.2.1 Quaternion Inverse.  The inverse of a normalized quaternion is simply

the conjugate:

Il = \/q%+Q§+q§+QZ=1 (2.4)
1 @i~ ige — g3 — kaq
Q= QP (25)
Simply Q1 is: ] ]
q1
_ —q2 A ~ ~
Q'= =q1 —1q2 — jq3 — kaqa (2.6)
—q3
9
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Using Equations 2.1 and 2.6 orthogonality of quaternion can be shown as:

(CI1 - 2612 - j% - ]A€Q4)

QQ "' = (¢ + i + 5(13 + /%Q4)

Q12
= ¢+ +a+a (2.7)
= Q=1
2.2.2  Quaternion Product. Quaternion multiplication is not commutative,

but associative. Quaternion product is given in matrix notation below:

@1 —q2 —q3 —qa q1
~ G2 ¢ —q1 Q3 q2

Q1 ® Q2 = (2.8)
g3 Q4 g1 —q2 qs
qs —q3 Q2 q1 q4

Two successive DCM rotations can be operated as D3 = DyD; where initial
rotation Dy is followed by Ds. In quaternion, rotations are combined as Q3 = Q; X Q-

where initial rotation Q; is followed by Q.

2.2.8 Conwversions. Conversions between direction cosine matrices and

quaternions can be easily made using the following conversions.

2.2.3.1 Quaternion to DCM. DCM matrix can be easily attained as

shown below:

(+a—a3—aq) 2(q2q3 + ¢1q4) 2(q294 — 13)
D = 2 —qu) (@G-B+E3-4) 2ae+ aa) (2.9)
2(Q1Q3 + Q2Q4) 2((]3(]4 - Q1Q2) (Q% - qg - %2, + qi)
10
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2.2.3.2 DCM to quaternion. One way of computing quaternion from

a rotation matrix D is as follows:

¢ ﬁ(DQ:s — Dsy)
L (Dgyy — D
Q=|?|= 41114( st~ Dia) (2.10)
a3 m(Dlz - D21)
K _%\/1+D11+D22+D33_
2.2.4 Vector Rotation. A vector can be rotated using quaternion in three-

dimensional space. While the form of quaternion is given in Equation (2.3), the form
of vector is:

T =ivy + jug + ks (2.11)

using these parameters the rotated vector has the form of:

vy (Gt +ad—a —aq}) 2(g2q3 + 14) 2(q294 — 143) Uy
v=vy | = 2(q2G3 — 1Q4) (Q% - q% + qg2, - Q@ 2(q192 + q394) Vg
vy 2(q193 + 2q4) 2(q3qs — q2) (67 — @ — @ +qi) v3

2.3 Inertial Navigation

The inertial navigation systems (INS) is a universal application which has been
used for estimating the position and orientation of vehicles. The operation of inertial
navigation highly depends on Newton’s laws of classical mechanics. According to
Newton’s laws, the motion of a body should continue straightly unless disturbed by
an external force. In this section, basic concepts of inertial navigation are presented.
The following inertial navigation basics are explained based on those presented in [13]

and [24].

2.3.1 Inertial Sensors. ~ Most of the inertial measurement units (IMU) which
are the core of INS are comprised of 3-axial accelerometers and gyroscopes. But the

primary sensor is the accelerometer which produces the output that is proportional to

11
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acceleration applied along the input axis. In fact, this output is not the acceleration
of the vehicle. It is the measurement of specific force f which is the difference between

inertial acceleration and gravity:
f=G-R (2.12)

where G stands for gravitational field vector and R is inertial acceleration. Specific
force is the only measurement which contains information about the vehicle motion

and can be measured inside a moving vehicle without using external signals.

The gyroscopes which are other sensors of IMU are sensitive to angular velocity
relative to inertial space. They are used to accomplish the orientation control of the
accelerometers since gyroscopes can measure rotation relative to inertial space. Either
three single-degree-of-freedom gyros or two two-degree-of-freedom gyros can be used

to obtain three-axis reference.

In general, the gyroscopes and accelerometers are mounted in a cluster arrange-

ment which is gimballed or strapdown. In this research, strapdown system is used.

2.8.2  Accelerometer Errors.  Besides their benefits, both accelerometers and
gyroscopes have errors which decreases the accuracy of either applied specific force or

angle of rotation. These corruptions that cause accelerometer errors are mainly listed

below [24]:

e Bias: A bias is the quantity which accelerometer reads when the specific force
is zero. It is either a constant or slowly-varying additive error. It is possible
to measure some bias components and correct them through factory calibration

techniques. Unfortunately, some bias components remain uncorrected.

e Scale Factor: The accelerometer scale factor error is a multiplicative error. It
can be either constant or slowly-varying. As with bias errors, some scale factor

effects can be corrected through calibration.

12
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e Sensor Misalignment: These are the result of mechanical fabrication and

installation errors.

e Cross Coupling: A cross coupling error will occur in a system which assumes
a fixed accelerometer input axis. If input axis is assumed fixed then it causes
accelerometer to sense one of the components of acceleration along the axis

which is normal to input axis:

A = aycosf — aysinf (2.13)

In this equation aysinf is the cross-coupling error.

e Vibro-pendulosity: This is a dynamic cross-coupling error. When the ac-
celerometer is operated in a vibratory environment, the vibrational acceleration
effects both the input axis and other axis which is perpendicular to the input

axis. This event causes a torque that effects the output of accelerometer.

e Measurement Noise: When high-bandwidth power spectral density is present,
measurement noise is observed as an additive error component with high-bandwidth
power spectral density. This noise component is the theoretical result of many

high-bandwidth sources.

e Gravity Model Errors: The accelerometer measures specific force. Thus, the
acceleration due to local gravity must be added to the accelerometer output to
produce an estimate of acceleration in the inertial frame. Errors of this local

gravity model causes additive errors in accelerometer.

2.3.8 Gyroscope Errors. Strapdown navigation systems use gyroscopes to

measure angular rate relative to inertial space, w?,.

The corruptions which cause the gyroscope errors are mainly listed below [24]:

e Bias: This bias is an either constant or slowly-varying additive error that is

independent of acceleration.

13

www.manaraa.com



e Acceleration-dependent Bias: This is the bias that is a function of applied

acceleration.

e Anisoelastic Bias: This bias is proportional to the product of acceleration

along pairs of axes that are normal to each other.

e Scale Factor: A scale factor error is a constant or slowly-varying multiplicative

error which is the ratio of output signal change to the input rate change.

e Sensor Misalignment: As in accelerometer errors, sensor misalignment errors

are also a result of mechanical fabrication and installation errors.

e Measurement Noise: This is an additive error component with high-bandwidth
power spectral density which is the theoretical result of many high-bandwidth

sources such as electrical noise, thermal noise, etc.

2.4 Inertial Navigation Error Model

Inertial navigation error model is developed based on the inertial navigation
dynamics [24]. The error models, described in this section, are the same models

presented in [25].

2.4.1 Inertial Sensor Error Model.  Both the accelerometer and gyroscopic
error models consist of a bias and a random noise where the random noises are modeled
as an additive white Gaussian noise (WGN) process and the biases are modeled as

first-order Gauss-Markov processes [10] based on the specification for the IMU:

f' = £ +ab+wh (2.14)
b

wh =wh + b+ w, (2.15)

where a® and bP are the accelerometer and gyroscopic biases, w® and w? are ac-

celerometer and gyroscope additive white Gaussian noise processes, respectively.
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The bias differential equations for a first-order Gauss-Markov process model for

both accelerometer and gyroscope are expressed as:

1

a® = ——a++vh (2.16)
Ta

: 1

b = —=b’ 4V} (2.17)
T

b
a

where 7, and 7, are the time constants, w! and wg are the WGN terms for the

accelerometer and gyroscopic biases, respectively.

2.4.2 Position And Velocity Error Development. The position and veloc-
ity errors are modeled as a stochastic process based on the Pinson navigation error
model [24]. The position and velocity error models are the same models presented

in [25]. These errors are:

op* =p" —p" (2.18)
vt =9t —v" (2.19)

The position error can be explained using the kinematic relationship between

position and velocity:

Sp° = 6v® (2.20)

and the acceleration error vector is:

SN =